Pages

Senin, 10 Oktober 2011

TUGAS ELEKTRONIKA KELAS IX




Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam suatu alat seperti komputer, peralatan elektronik, termokopel, semikonduktor, dan lain sebagainya. Ilmu yang mempelajari alat-alat seperti ini merupakan cabang dari ilmu fisika, sementara bentuk desain dan pembuatan sirkuit elektroniknya adalah bagian dari teknik elektro, teknik komputer, dan ilmu/ teknik elektronika dan instrumentasi.


Dalam rangkaian elektronika terdapat bermacam-macam komponen. Ada transistor, resistor, IC, trafo dan lain-lain. Komponen-komponen ini dikategorikan menjadi bagian-bagian berikut:






Komponen Pasif :
  • resistor atau tahanan
  • kapasitor atau kondensator
  • induktor atau kumparan
  • transformator


Komponen Aktif :


* dioda :
  • dioda cahaya
  • dioda foto
  • dioda laser
  • diode Zener
  • dioda Schottky
* transistor :
  • transistor efek medan
  • transistor bipolar
  • transistor IGBT
  • transistor Darlington
  • transistor foto


Sirkuit Analog :
  • Amplifier atau Penguat
  • Opamp (Operational Amplifier) termasuk negative feedback
  • Amplifier Daya
  • FET (Filed Effect Transistor), JFET, MOSFET, MESFET, MODFET, HEMT
  • CMOS, N-MOS, P-MOS, Pass-transistor


Sirkuit Digital :
  • Gerbang logika
  • flip-flop
  • penghitung atau pencacah (Inggris: counter)
  • register
  • multiplekser (MUX) dan DEMUX
  • Penjumlah (Adder), Subtraktor (Pengurang) & Pengganda (Multiplier)
  • mikroprosesor
  • mikrokontroler
  • ADC, DAC, Atmel AVR‎
  • Digital Signal Processor (DSP)
  • FPGA (Field-Programmable Gate Array), ASIC, FPAA, Embedded-FPGA, CPLD
  • Semua jenis komputer digital: komputer super, mainframe, komputer mini, komputer pribadi desk-top, laptop, PDA, Smart card, telepon pintar, dll


Alat ukur :
  • Ohm-meter
  • Amper-meter
  • Voltmeter
  • Multimeter
  • Oskiloskop
  • Function generator
  • Digital Signal Analyzer
  • Spectrum meter
Dan ini beberapa jenis komponen elektronika beserta fungsinya :

1. 
Kapasitor / Kondensator









gambar : wujud asli kapasitor / ELCO

Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik.Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi.




gambar : kondensator dan simbol



Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif, karena terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini "tersimpan" selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif dan negatif di awan.




Berdasarkan kegunaannya kondensator di bagi menjadi :
  1. Kondensator tetap (nilai kapasitasnya tetap tidak dapat diubah)
  2. Kondensator elektrolit (Electrolit Condenser = Elco)
  3. Kondensator variabel (nilai kapasitasnya dapat diubah-ubah)


gambar : kapasitor berkapasitar kecil

Kapasitansi


Kapasitansi didefenisikan sebagai kemampuan dari suatu kapasitor untuk dapat menampung muatan elektron. Coulombs pada abad 18 menghitung bahwa 1 coulomb = 6.25 x 1018 elektron. Kemudian Michael Faraday membuat postulat bahwa sebuah kapasitor akan memiliki kapasitansi sebesar 1 farad jika dengan tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulombs. Dengan rumus dapat ditulis :




Q = C.V
ket :
Q = Muatan elektron dalam C (coulombs)
C = Nilai kapasitansi dalam F (farads)
V = Besar tegangan dalam V (volt)


Untuk rangkain elektronik praktis, satuan farads adalah sangat besar sekali. Umumnya kapasitor yang ada di pasar memiliki satuan uF (10-6 F), nF (10-9 F) dan pF (10-12 F). Konversi satuan penting diketahui untuk memudahkan membaca besaran sebuah kapasitor. Misalnya 0.047uF dapat juga dibaca sebagai 47nF, atau contoh lain 0.1nF sama dengan 100pF.


1 Farad = 1.000.000 µF (mikro Farad)
1 µF = 1.000.000 pF (piko Farad)
1 µF = 1.000 nF (nano Farad)
1 nF = 1.000 pF (piko Farad)
1 pF = 1.000 µµF (mikro-mikro Farad)
1 µF = 10-6 F
1 nF = 10-9 F
1 pF = 10-12 F


Fungsi kapasitor adalah sebagai berikut :
  • Sebagai filter (penyaring) dalam rangkaian Power Supply,
  • Sebagai Pembangkit frekuensi dalam rangkaian antena ataupun dalam rangkaian lainnya,
  • Sebagai kopling antara rangkaian yang satu dengan rangkaian yang lain,
  • Menghilangkan Loncatan api (bouncing) bila saklar dari beban di pasang.
  • Menghemat daya listrik,
  • Meredam Noise, dll
Tipe Kapasitor :
  • Kapasitor Electrostatic
  • Kapasitor Electrolytic
  • Kapasitor Electrochemical


Tegangan Kerja (working voltage)


Tegangan kerja adalah tegangan maksimum yang diijinkan sehingga kapasitor masih dapat bekerja dengan baik. Para elektro- mania barangkali pernah mengalami kapasitor yang meledak karena kelebihan tegangan. Misalnya kapasitor 10uF/25V, maka tegangan yang bisa diberikan tidak boleh melebihi 25 volt dc. Jika kita memaksakannya, maka kapsitor itu akan meledak karena dia tidak bekerja pada tegangan kerjanya.Umumnya kapasitor-kapasitor polar bekerja pada tegangan DC dan kapasitor non-polar bekerja pada tegangan AC.





Resistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam suatu rangkaian. Kemampuan resistor dalam menghambat arus listrik sangat beragam disesuaikan dengan nilai resistansi resistor tersebut.Resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Satuan resistansi dari suatu resistor disebut Ohm atau dilambangkan dengan simbol Ω (Omega).





Bentuk resistor yang umum adalah seperti tabung dengan dua kaki di kiri dan kanan. Pada badannya terdapat lingkaran membentuk cincin kode warna untuk mengetahui besar resistansi tanpa mengukur besarnya dengan Ohmmeter. Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA (Electronic Industries Association) seperti yang ditunjukkan pada tabel dibawah.
gambar : simbol resistor




Didalam rangkaian elektronika resistor dilambangkan dengan angka " R "Ada beberapa jenis resistor yang ada dipasaran antara lain : Resistor Carbon, Wirewound, dan Metal Film. Ada juga Resistor yang dapat diubah-ubah nilai resistansinya antara lain : Potensiometer dan Trimpot. Selain itu ada juga Resistor yang nilai resistansinya berubah bila terkena cahaya namanya LDR ( Light Dependent Resistor ) dan Resistor yang yang nilai resistansinya berubah tergantung dari suhu disekitarnya namanya NTC ( Negative Thermal Resistance .


Kode Warna


gambar : Tabel Warna

Untuk resistor jenis carbon maupun metalfilm biasanya digunakan kode-kode warna sebagai petunjuk besarnya nilai resistansi ( tahanan ) dari resistor. Kode-kode warna itu melambangkan angka ke-1, angka ke-2, angka perkalian dengan 10 ( multiflier ), nilai toleransi kesalahan, dan nilai qualitas dari resistor. Kode warna itu antara lain Hitam, Coklat, Merah, Orange, Kuning, Hijau, Biru, Ungu, Abu-abu, Putih, Emas dan Perak. Warna hitam untuk angka 0, coklat untuk angka 1, merah untuk angka 2, orange untuk angka 3, kuning untuk angka 4, hijau untuk angka 5, biru untuk angka 6, ungu untuk angka 7, abu-abu untuk angka 8, dan putih untuk angka 9. Sedangkan warna emas dan perak biasanya untuk menunjukan nilai toleransi yaitu emas nilai toleransinya 10 %, sedangkan perak nilai toleransinya 5 %.


Cara cepat Menghafal kode warna adalah :
Hitam, Coklat, Merah, Orange, Kuning, Hijau, Biru, Violet, Abu-abu, Perak, Putih = Hi-Co-M-O-K-Hi-Bi-Vi-A-Pe-P




Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)


Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen


Cara kerja transistor :
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.


Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.




FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.


Jenis-jenis transistor :
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain


a. BJT
BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).


Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.


b. FET
FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.


FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode,

1. DIODA
Dioda termasuk komponen elektronika yang terbuat dari bahan semikonduktor. Beranjak dari penemuan dioda, para ahli menemukan juga komponen turunan lainnya yang unik.




Struktur dan Simbol Dioda

Dioda memiliki fungsi yang unik yaitu hanya dapat mengalirkan arus satu arah saja. Struktur dioda tidak lain adalah sambungan semikonduktor P dan N. Satu sisi adalah semikonduktor dengan tipe P dan satu sisinya yang lain adalah tipe N. Dengan struktur demikian arus hanya akan dapat mengalir dari sisi P menuju sisi N.


Gambar ilustrasi di atas menunjukkan sambungan PN dengan sedikit porsi kecil yang disebut lapisan deplesi (depletion layer), dimana terdapat keseimbangan hole dan elektron. Seperti yang sudah diketahui, pada sisi P banyak terbentuk hole-hole yang siap menerima elektron sedangkan di sisi N banyak terdapat elektron-elektron yang siap untuk bebas merdeka. Lalu jika diberi bias positif, dengan arti kata memberi tegangan potensial sisi P lebih besar dari sisi N, maka elektron dari sisi N dengan serta merta akan tergerak untuk mengisi hole di sisi P.




Tentu kalau elektron mengisi hole disisi P, maka akan terbentuk hole pada sisi N karena ditinggal elektron. Ini disebut aliran hole dari P menuju N,Kalau mengunakan terminologi arus listrik, maka dikatakan terjadi aliran listrik dari sisi P ke sisi N.


dioda dengan bias maju

Sebalikya apakah yang terjadi jika polaritas tegangan dibalik yaitu dengan memberikan bias negatif (reverse bias). Dalam hal ini, sisi N mendapat polaritas tegangan lebih besar dari sisi P.


dioda dengan bias negatif

Tentu jawabanya adalah tidak akan terjadi perpindahan elektron atau aliran hole dari P ke N maupun sebaliknya. Karena baik hole dan elektron masing-masing tertarik ke arah kutup berlawanan. Bahkan lapisan deplesi (depletion layer) semakin besar dan menghalangi terjadinya arus.


Demikianlah sekelumit bagaimana dioda hanya dapat mengalirkan arus satu arah saja. Dengan tegangan bias maju yang kecil saja dioda sudah menjadi konduktor. Tidak serta merta diatas 0 volt, tetapi memang tegangan beberapa volt diatas nol baru bisa terjadi konduksi. Ini disebabkan karena adanya dinding deplesi (deplesion layer). Untuk dioda yang terbuat dari bahan Silikon tegangan konduksi adalah diatas 0.7 volt. Kira-kira 0.2 volt batas minimum untuk dioda yang terbuat dari bahan Germanium.


grafik arus dioda

Sebaliknya untuk bias negatif dioda tidak dapat mengalirkan arus, namun memang ada batasnya. Sampai beberapa puluh bahkan ratusan volt baru terjadi breakdown, dimana dioda tidak lagi dapat menahan aliran elektron yang terbentuk di lapisan deplesi.


2. DIODA Zener
Phenomena tegangan breakdown dioda ini mengilhami pembuatan komponen elektronika lainnya yang dinamakan zener. Sebenarnya tidak ada perbedaan sruktur dasar dari zener, melainkan mirip dengan dioda. Tetapi dengan memberi jumlah doping yang lebih banyak pada sambungan P dan N, ternyata tegangan breakdown dioda bisa makin cepat tercapai. Jika pada dioda biasanya baru terjadi breakdown pada tegangan ratusan volt, pada zener bisa terjadi pada angka puluhan dan satuan volt. Di datasheet ada zener yang memiliki tegangan Vz sebesar 1.5 volt, 3.5 volt dan sebagainya.


dioda zener

Ini adalah karakteristik zener yang unik. Jika dioda bekerja pada bias maju maka zener biasanya berguna pada bias negatif (reverse bias).


3. LED
LED adalah singkatan dari Light Emiting Dioda, merupakan komponen yang dapat mengeluarkan emisi cahaya.LED merupakan produk temuan lain setelah dioda. Strukturnya juga sama dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang sambungan P-N juga melepaskan energi berupa energi panas dan energi cahaya. LED dibuat agar lebih efisien jika mengeluarkan cahaya. Untuk mendapatkna emisi cahaya pada semikonduktor, doping yang pakai adalah galium, arsenic dan phosporus. Jenis doping yang berbeda menghasilkan warna cahaya yang berbeda pula.




simbol LED

Pada saat ini warna-warna cahaya LED yang banyak ada adalah warna merah, kuning dan hijau.LED berwarna biru sangat langka. Pada dasarnya semua warna bisa dihasilkan, namun akan menjadi sangat mahal dan tidak efisien. Dalam memilih LED selain warna, perlu diperhatikan tegangan kerja, arus maksimum dan disipasi daya-nya. Rumah (chasing) LED dan bentuknya juga bermacam-macam, ada yang persegi empat, bulat dan lonjong.


Dioda banyak diaplikasikan pada rangkaian penyerah arus (rectifier) power suplai atau konverter AC ke DC. Dipasar banyak ditemukan dioda seperti 1N4001, 1N4007 dan lain-lain. Masing-masing tipe berbeda tergantung dari arus maksimum dan juga tegangan breakdwon-nya. Zener banyak digunakan untuk aplikasi regulator tegangan (voltage regulator). Zener yang ada dipasaran tentu saja banyak jenisnya tergantung dari tegangan breakdwon-nya. Di dalam datasheet biasanya spesifikasi ini disebut Vz (zener voltage) lengkap dengan toleransinya, dan juga kemampuan dissipasi daya




Aplikasi Led Matrik

LED sering dipakai sebagai indikator yang masing-masing warna bisa memiliki arti yang berbeda. Menyala, padam dan berkedip juga bisa berarti lain. LED dalam bentuk susunan (array) bisa menjadi display yang besar. Dikenal juga LED dalam bentuk 7 segment atau ada juga yang 14 segment. Biasanya digunakan untuk menampilkan angka numerik dan alphabet.



Di ilmu elektronika , Integrated Circuit atau sirkuit yang mengintegrasikan ( juga dikenal sebagai IC , microcircuit , microchip , chip silicon , atau chip ) adalah merupakan bagian sirkuit elektronik (alat terdiri atas semipenghantar yang banyak, dikenal sebagai komponen pasif ) yang didesain di sebuah benda tipis material semipenghantar . Integrated Circuit ini digunakan hampir disemua perlengkapan elektronik dalam kehidupan kita sehari-hari, dan IC ini telah membuat suatu revolusi dunia ilmu elektronika dan telah menggantikan Tabung Hampa.
IC

Integrated circuit

Kita bisa menemukan beberapa penggunaan IC ini di komputer, kalkulator, telepone, handphone, dan peralatan elektronika dan komunikasi lainnya. IC (integrated Circuit) ini mempunyai fungsi dari beberapa komponen-komponen elektronika lainnya, seperti :transistordioda dan LEDresistor, dan kondensator yang digabung menjadi satu alat yang memilik banyak fungsi. Dengan adanya IC ini, maka alat-alat elektronika itu semakin hari akan semakin kecil dan lebih simpel dalam pemakaiannya. Bisa kita bayangkan, sejarah Televisi dulunya adalah sebesar 1 ruangan rumah. Akan tetapi, dengan awalnya para peneliti menemukan transistor, maka televisi bisa lebih kecil dan tentunya dengan pemakaian IC pada zaman sekarang ini dapat kita lihat perbedaan besar badan Televisi.




Integrated Circuit

gambar : integrated circuit
Didalam komputer tentunya demikian. Otak komputer yang kita kenal selama ini adalah terbentuk dari Integrated Cirucuit. Yang mana kita ketahui, bahwa processor di komputer memiliki ruang simpan untuk bisa menjadi pusat pengendali setiap perintah yang kita berikan ke padanya. Pemakaian IC ini juga termasuk hemat dan tidak memerlukan daya yang besar. Demikian halnya juga dengan kebutuhan tegangan dan arusnya.
IC ini merupakan bahan semikonduktor yang sangat sensitif. Jika pada perancangan elektronika kita tidak melihat spesifikasi atau datasheet dari IC ini, maka kita bisa saja merusak Integrated Circuit itu.


Sejarah Penemuan Integrated Circuit (IC)
Pada tahun 1958, seorang insinyur bernama Jack Kilby yang bekerja pada Texas Intruments mencoba memecahkan masalah dengan memikirkan sebuah konsep menggabungkan seluruh komponen elektronika dalam satu blok yang dibuat dari bahan semikonduktor. Terciptalah chip yang pertama, meskipun masih dengan segala kekurangan dan kelemahannya. Beberapa saat setelah itu, Robert Noyce, yang bekerja pada Fairchild Semiconductor Corporation, menemukan hal serupa, meskipun mereka bekerja pada dua tempat yang berbeda.


Sejak penemuan pertama sebuah IC, riset banyak dilakukan untuk menyempurnakan sebuah IC. Beberapa hal yang cukup penting dalam sebuah IC adalah ukuran dan daya listrik yang dibutuhkan sebuah IC untuk berfungsi dengan baik. Saat ini, sebuah IC yang ukurannya sekitar jari kuku manusia, di dalamnya terdapat ratusan juta komponen yang terintegrasi menjadi satu.


Gorden Moore, co-founder perusahaan Intel, pada tahun 1965 memperkirakan bahwa jumlah transistor yang terdapat dalam sebuah IC akan bertambah 2 kali setiap 18 bulan sekali. Kecenderungan peningkatan jumlah transistor ini telah terbukti setelah sekian lama dan diperkirakan akan terus berlanjut.


Sebagai contoh perkembangan IC, sebuah 64-Mbit DRAM yang pertama kali di pasaran pada tahun 1994, terdiri dari 3 juta transistor. Dan microprocessor Intel Pentium 4 terdiri lebih dari 42 juta transistor dan kira-kira terdapat 281 IC didalamnya. Bahkan berdasar pada International Technology Roadmap for Semiconductor (ITRS), diharapkan akan tersedia sebuah chip yang terdiri dari 3 milyar transistor pada tahun 2008.


Umumnya, bahan semikonduktor yang digunakan dalam pembuatan IC, adalah silikon. Beberapa bahan lain pun juga memungkinkan untuk digunakan. Proses pembuatan IC sendiri terdiri dari ratusan step. Meskipun proses pembutan hingga siap untuk digunakan sangatlah rumit, namun keuntungan yang didapat dari fleksibilitas sebuah IC dibandingkan dengan jika tidak menggunakan IC.


Jika ditilik dari sejak penemuan sebuah IC, teknologi IC boleh dibilang masih sangat muda. Belum genap setengah abad dari pertama kali diproduksi, IC telah berperan penting dalam peradaban manusia. Seperti komputer misalnya, yang proses utamanya dikontrol oleh ratusan IC. Komputer merupakan hal penting dalam mendukung perkembangan teknologi lainnya. Sudah sepantasnya kita mengucap syukur kepada Tuhan, yang telah mengizinkan perkembangan teknologi terjadi begitu pesatnya, yang akhirnya membawa kemudahan bagi umat manusia.



    6. INDUKTOR 


    Induktor atau kumparan adalah salah satu komponen pasif elektronika yang dapat menghasilkan magnet jika dialiri arus listrik dan sebaliknya dapat menghasilkan listrik jika diberi medan magnet. Induktor ini biasanya dibuat dengan kawat penghantar tembaga yang dibentuk menjadi lilitan atau kumparan. Satuan iduktansinya adalah Henry (H=Henry, mH=mili Henry, uH=mikro Henry, nH=nano Henry) dengan notasi penulisan huruf "L".

    Sebuah induktor pada kenyataanya merupakan gabungan dari induktansi, beberapa resistansi karena resistivitas kawat, dan beberapa kapasitansi. Induktor akan berfungsi sebagai tahanan jika dialiri arus listrik bolak-balik (AC).

    Kegunaan Induktor

    1. Pemroses sinyal pada rangkaian analog
    2. Mengholangkan noise (dengung)
    3. Mencegah interferensi frekwensi radio
    4. Komponen utama pembuatan Transformator
    5. Sebagai filter pada rangkaian power supply
    Banyak perangkat dan komponen elektronika yang dibangun mengunakan kumparan seperti speaker, relay, buzzer, trafo, dan kpmponen lain yang berhubungan dengan frekwensi dan medan magnet.

    Fungsi Induktor
    1. Tempat terjadinya gaya magnet
    2. Pelipat tegangan
    3. Pembangkit getaran

    Berdasarkan kegunaannya Induktor bekerja pada:
    1. Frekuensi tinggi pada spul antena dan osilator
    2. Frekuensi menengah pada spul MF
    3. Frekuensi rendah pada trafo input, trafo output, spul speaker, trafo tenaga, spul relay dan spul penyaring
    (sumber : m.edukasi.net)

    Bentuk fisik induktor
    Induktor

    Simbol Induktor
    Induktor


    Karena komponen, sirkuit, pengukuran dan pengkabelan dalam elektronik maka ada dibuatkan simbol-simbol elektronika untuk memudahkan kita dalam perancangan serta perbaikan suatu alat elektronika. Simbol ini juga berguna untuk mempermudah kita dalam pemahaman tentang elektronika. Dan ingat, Setiap simbol dari suatu komponen adalah sama dan tidak pernah berubah-ubah.


    Dibawah ini adalah beberapa simbol elektronika yang umum dalam elektronika :
    1. Simbol Resistor :
    2. Simbol Kapasitor :




    3. Simbol Dioda :

    4. Simbol Transistor :

    5. Simbol Gerbang Logika :

    6. Simbol Pengkabelan :

    7. Simbol Pengukuran :

    8. Simbol Sensor :

    8. Simbol Sirkuit Power :
    PENYUSUN : YOHANES EVAN PRATAMA PUTRA 
    KELAS : IX D / 22
                                                                                                                                            
                                                                                                                                               Sumber : http://elektrokita.blogspot.com/

    0 komentar:

    Posting Komentar